

ASTRONAUT ID CARD DESIGN

In this activity, students imagined astronaut profiles by adding details such as name, age, country, and skills. They also explored the real-life challenges astronauts face during space missions, which helps foster creativity and awareness about space travel.

DESIGN YOUR OWN PLANET

Students used their imagination to draw and design a fictional planet along with its moon. They also created unique names for both, encouraging creativity and originality.

MY DAILY SPACE SCHEDULE

In this activity, students imagined themselves as astronauts aboard the International Space Station (ISS). They designed a daily schedule by assigning tasks to different times of the day while considering the effects of zero gravity, helping them understand the discipline and challenges of life in space.

CATEGORIZE LIKE AN ASTRONAUT!

Students categorized a list of items used in space into four groups: Survival, Scientific, Personal, and Tools/Equipment. The activity helped them understand the different needs and priorities of astronauts during space missions.

MY ROCKET RIDE TO HISTORY

Students wrote a creative story by imagining themselves launching in a time-traveling rocket. On their journey, they selected a space event from the past to visit and describe their adventure to that historical moment in space exploration.

DESIGN YOUR OWN ASTRONAUT BADGE

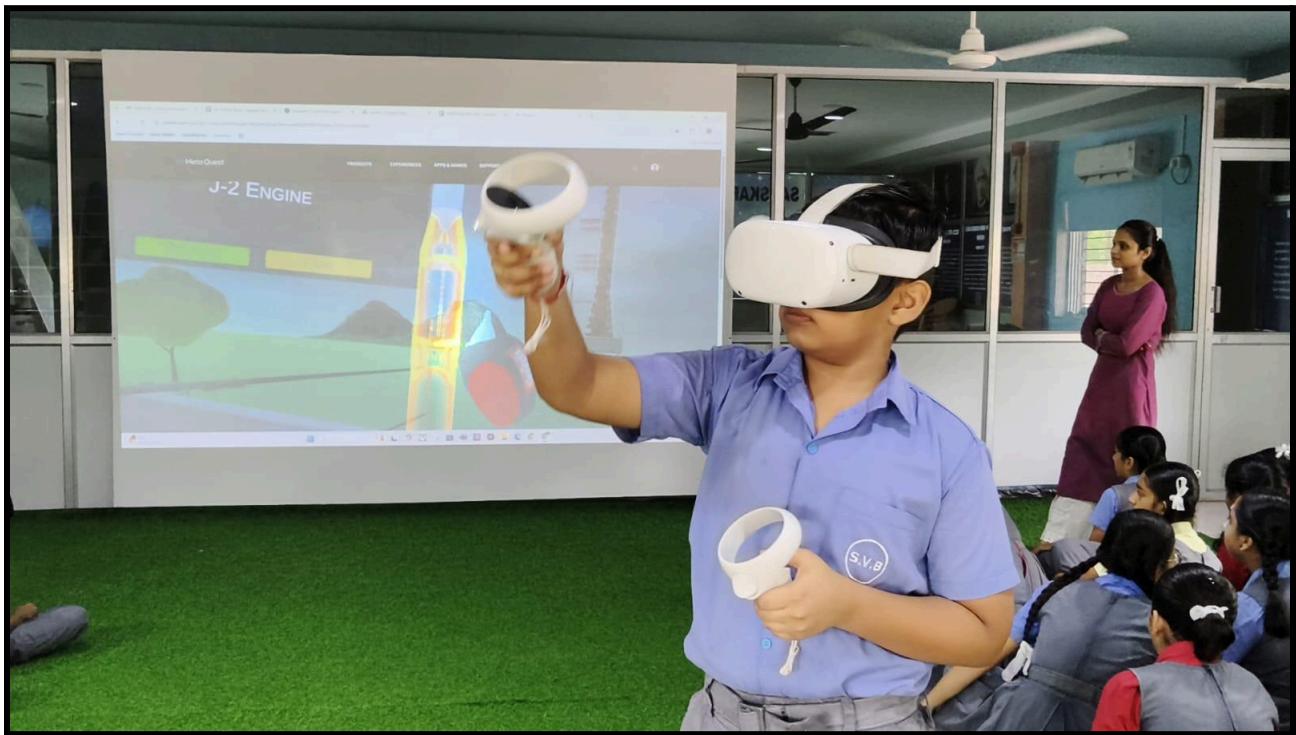
Students used their creativity to design a personalized astronaut badge. They select a badge shape, add their astronaut name, space symbol, and mission motto, then decorate it with bright space colors and a flag of their choice.

MY SPACE WEIGHT CHART

In this activity, students used their Earth weight to calculate how much they would weigh on different planets using each planet's gravity factor. They then plot the values on a bar graph to visually compare how gravity affects weight across the solar system. The activity helps them understand gravitational differences while introducing basic data interpretation through graphs.

ORIGAMI SPACE BUILDERS

Students created paper models of rockets and UFOs using origami techniques to explore space engineering in a fun and creative way. The models are pasted into notebooks, and the background is decorated with drawings and colors to complete imaginative space scenes.


ALIEN FLORA – DRAW YOUR DREAM PLANT

In this activity, students imagined and designed their own alien plant that could grow on another planet. They draw the plant, give it a creative name, and describe its unique features—such as its habitat, special powers, and possible uses for astronauts or aliens. The activity blends science with creativity, encouraging students to explore biology in a fun and imaginative way.

SPACE THEME WORD CHAIN

Students created a chain of words where each word relates to space or astronauts and begins with the last letter of the previous word. This activity builds vocabulary while making learning interactive and fun.

MOON SURFACE RIDDLE

Students solved creative and fun riddles based on the Moon's features, including craters, phases, and regolith. The activity makes learning about the Moon engaging and enjoyable.

DRAW & LABEL PARTS OF THE ROCKET

Students learnt about the different parts of a rocket—such as the nose cone, fuel tank, oxidizer, pumps, nozzle, fins, and payload system—through an illustrated PPT. After understanding the function of each part, they draw a rocket in their notebooks and label all the components.

LUNAR WEATHER REPORT

In this activity, students imagined themselves as astronauts on the Moon and wrote a lunar weather update. They described conditions such as temperature, gravity, craters, lunar seismic activity, and more, combining creativity with scientific understanding.

MY MOON MISSION PASSPORT

Students designed a personalized astronaut passport for an imaginative Moon mission. It included their astronaut name, space agency, photo, and special lunar skills, making the activity engaging and creative.

DESIGN A MOON FLAG & OATH

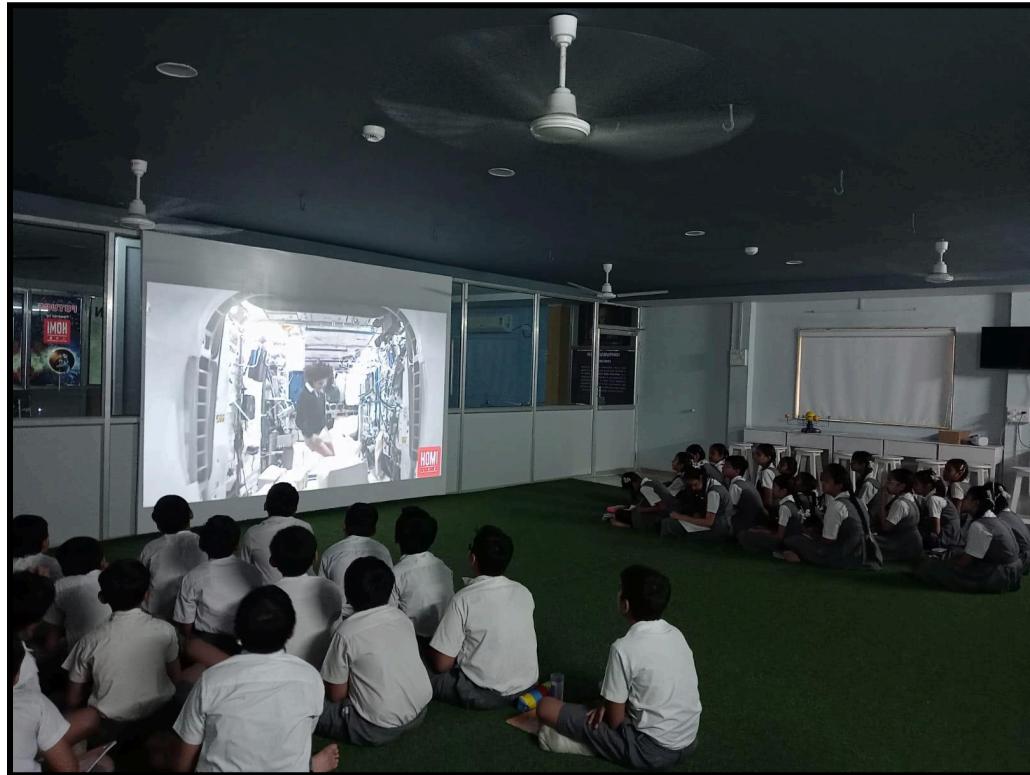
Students imagined themselves as part of a Moon mission and designed their own unique Moon flag, selecting symbols and colors that represent their mission's goals. They also created a short "Moon Oath" or slogan to express the spirit of their mission.

LUNAR HOT SEAT: KBC CHALLENGE ACTIVITY

In this activity, students took part in a quiz game styled like *Kaun Banega Crorepati* (KBC) with a lunar twist. Questions were based on the *Moon Walker* video modules, covering topics such as the Moon, Apollo missions, Saturn V rockets, and the Lunar Orbiter program. Students are divided into groups and take turns answering, with the fastest correct response winning each round. Winners receive a **Lunar Champion Badge**, making the activity fun, competitive, and memorable.

WRITE AN ESSAY ON “MY DREAM”

In this activity, students wrote an essay on “*Becoming an Astronaut and Visiting the Moon*”, expressing their feelings, the challenges of space travel, and the sights seen in space and on the Moon. After writing, they illustrate the same story through a creative drawing, bringing their dream lunar adventure to life.


MISSION TO THE MOON (BOARD RACE)

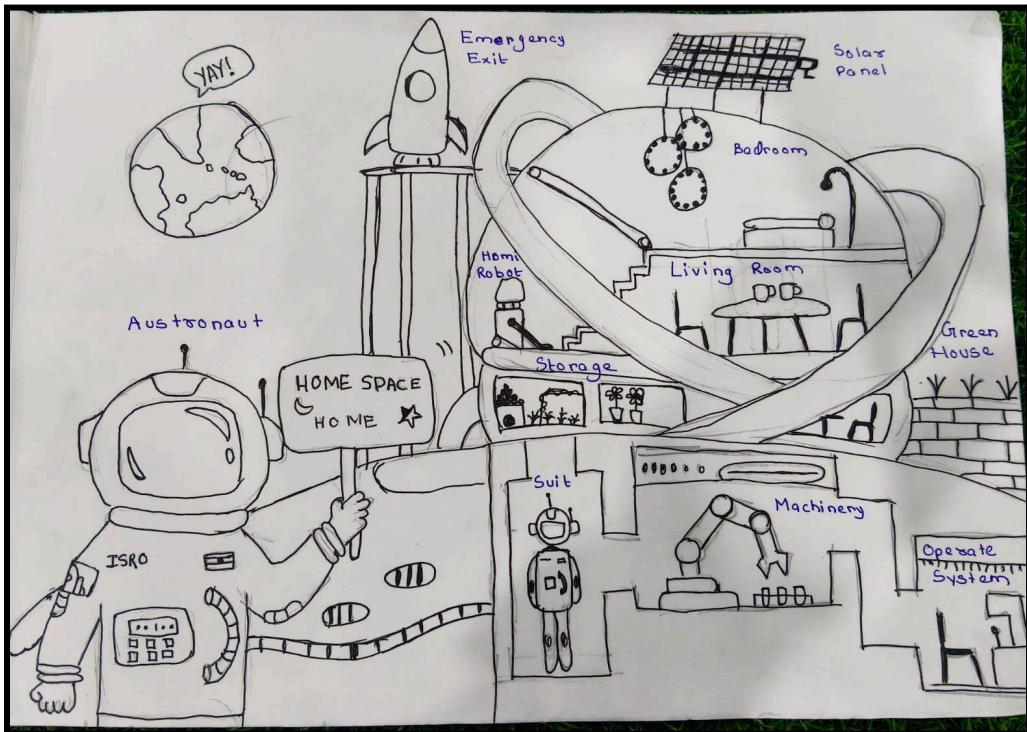
In this activity, students played a space-themed board game designed like a race to space, similar to *Snakes and Ladders* but featuring rockets, meteors, and lunar paths. Students are divided into teams and take turns answering quiz questions based on the *Moon Walker* modules. A correct answer allows the team to roll the dice and move their token forward. The first team to reach the finish line on the space board is declared the winner. This activity combines learning with play, making the lesson both exciting and engaging.

MOON VS. EARTH COMPARISON

Students compared the Moon and Earth by examining key features such as atmosphere, gravity, water, life, and surface conditions. This activity helps them understand the fundamental differences between the two celestial bodies.

DUST TO PLANET CREATION ACTIVITY

Students learnt how planets form from space dust and gas by illustrating each stage from a nebula to fully formed planets. This activity helps them visualize planetary formation in a creative way.


MOON QUIZ: AN IN-DEPTH EXPLORATION

Students actively participated in the *Moon Quiz* from *Embark on a Mission to the Moon: An In-Depth Exploration*. One by one, they answer the questions, making the session interactive and engaging.

MOON BASE DESIGN

Students drew and designed a Moon base suitable for survival on the lunar surface. Their designs balance creativity with real needs for living in space and include key components such as habitats, sources of energy, food production, research facilities, and safety systems.

MOON ROVER VS. MOON WALKER

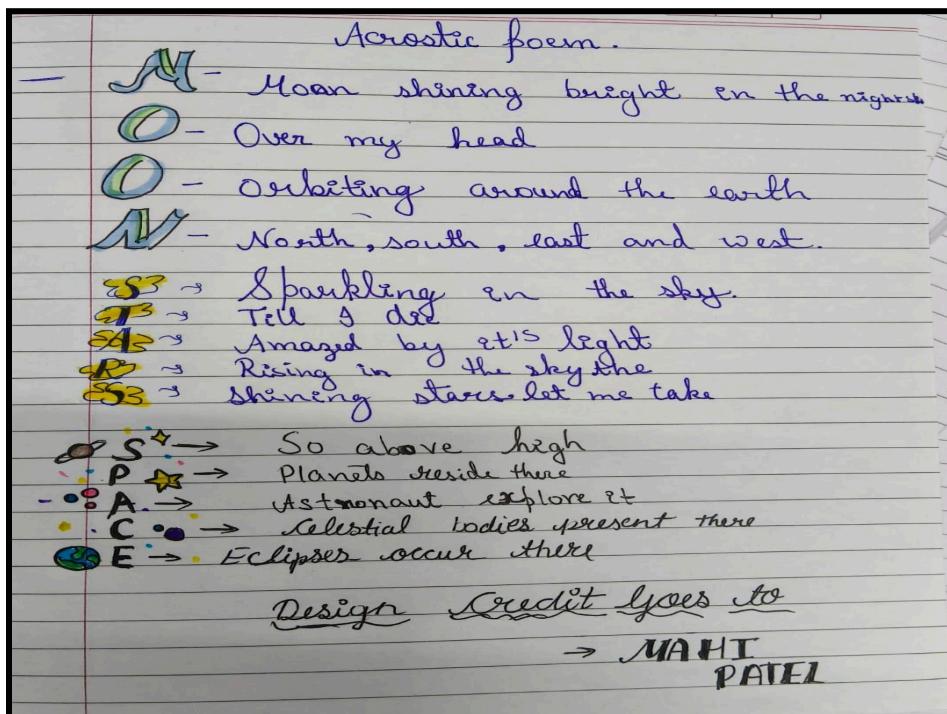
Students compared a Moon Walker (astronaut) and a Moon Rover (robot) by examining features such as movement, speed, energy source, flexibility, tasks, risk, and communication. This activity helps them understand the unique roles of humans and machines in space exploration.

INTERVIEW WITH A MOONWALKER

In this activity, students wrote a creative, imaginary interview with an astronaut. They frame thoughtful questions and provide realistic answers as if conversing directly with the astronaut, encouraging both imagination and critical thinking.

EARTH-MOON VENN DIAGRAM SORT

Students read a mixed list of features related to the Earth and the Moon and sort them into a Venn diagram with sections for *Earth Only*, *Moon Only*, and *Both*. This activity helps them understand similarities and differences between the two celestial bodies in a fun and interactive way.


LUNAR MISSION PATCH ART

In this activity, students were introduced to Apollo mission patches and learned how each symbol and color tells a story. They view and discuss different Apollo patches with explanations of their meanings and design choices. Afterward, they created their own lunar mission patch, representing their mission name, goals, and values through meaningful symbols and colors.

LUNAR ACROSTIC & APOLLO TRIBUTE POEM

In this activity, students selected three words from a Word Bank (MOON, APOLLO, ROCKET, SPACE, ASTRONAUT, CRATER, ROVER, GALAXY, LUNAR, STARS, ORBIT) and write creative Acrostic Poems, with each line beginning with the letters of the chosen word. They then compose a *Mission Apollo Tribute Poem*, dedicated to Apollo 11 astronauts or any Apollo mission, highlighting their courage, journey, and achievements on the Moon.

LIFE IN 1/6TH GRAVITY: MOON MATH

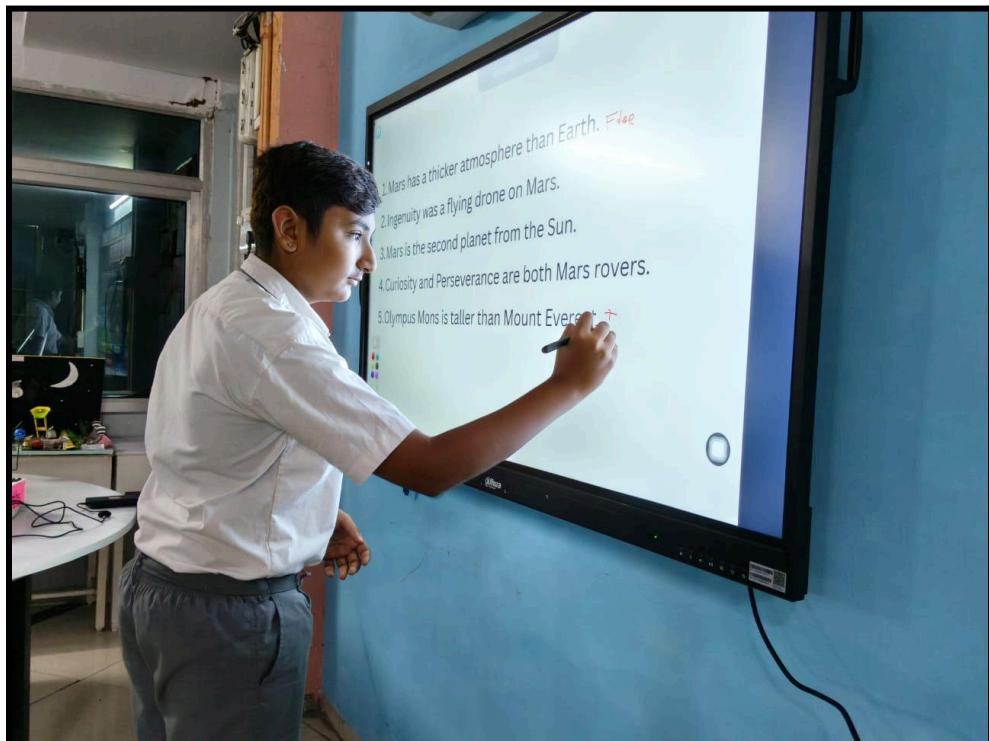
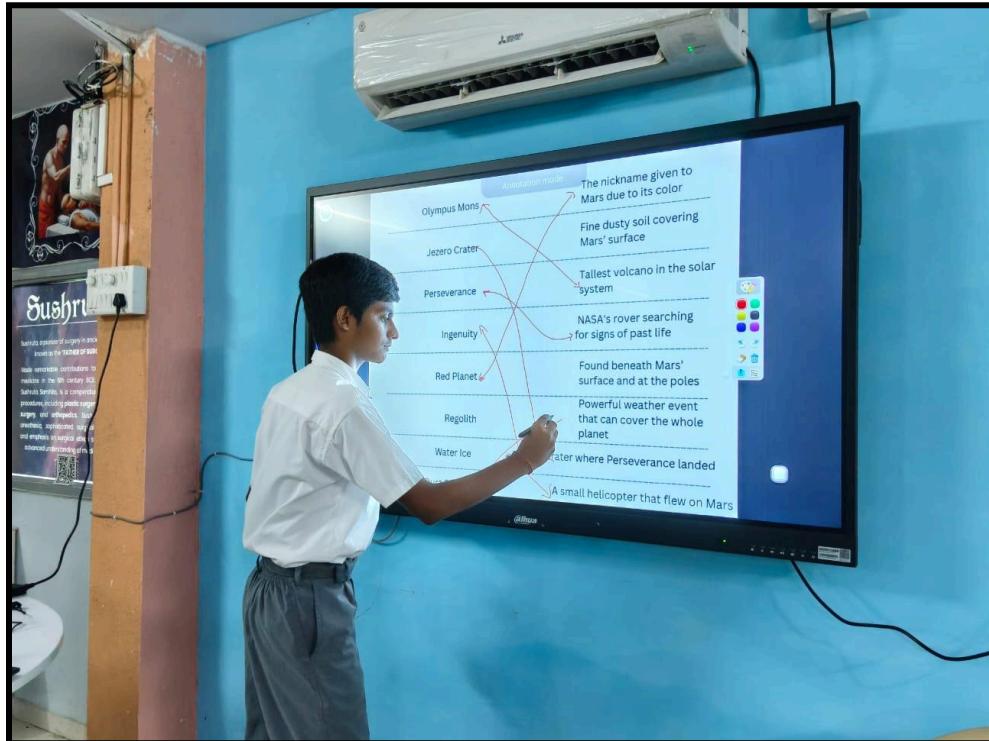
In this activity, students measured their jump height, long jump distance, throwing distance, weight, and the heaviest object they can lift using simple tools like measuring tape and scales. They then calculated these measurements as they would be on the Moon, where gravity is only one-sixth of Earth's. By comparing Earth and Moon results, students gain a clear understanding of how movement and strength would feel very different on the lunar surface.

MARS MISSION LOG

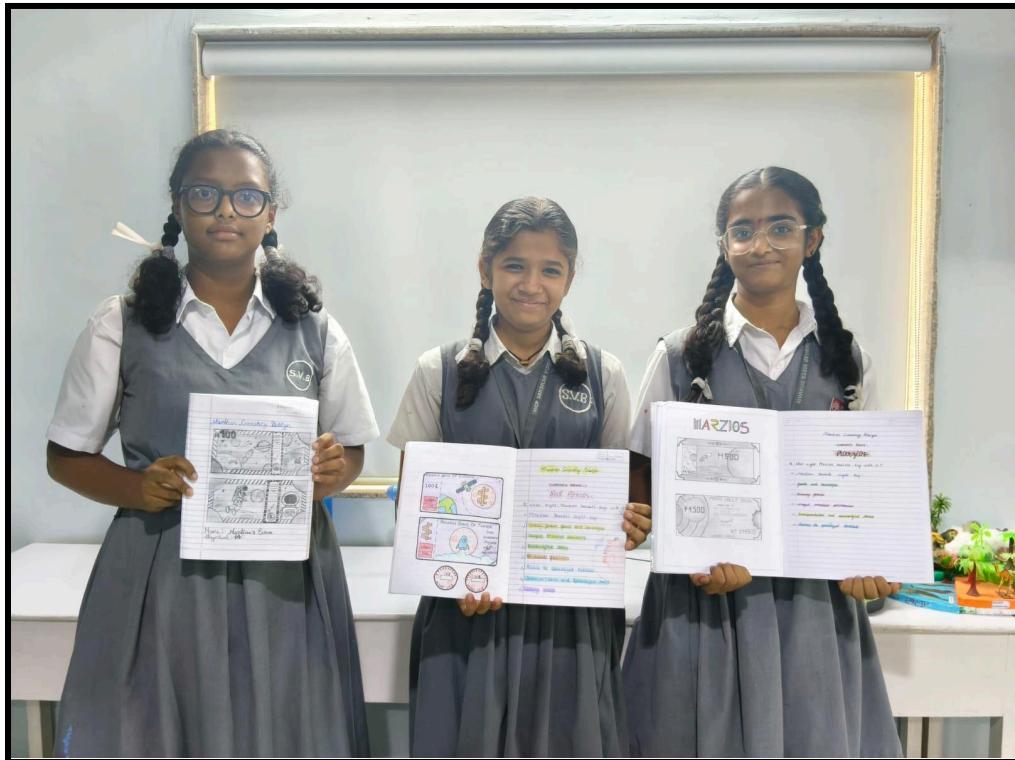
Students wrote a diary entry by imagining themselves on the Red Planet. They describe how they land on Mars, what they see, the tasks they perform, the challenges they face, and their feelings during the experience.

DESIGN YOUR OWN MARS ROVER

Students used their creativity to design and draw their own rover. They included parts such as wheels, cameras, arms, and power units while learning the role of each component in space exploration.



MARS COLONY REPORT

In this activity, students imagined setting up a colony on Mars. They wrote reports covering survival challenges, methods to grow food and provide clean water, possible energy sources, and communication systems required for life on the Red Planet.


MARS ARCHITECTS: MATCH & QUIZ

Students participated in a Mars-themed activity that includes *Match the Following* and a *True or False Quiz*. They match key Mars-related terms with their correct descriptions and answer true/false questions based on facts about Mars, its surface, missions, and landmarks.

DESIGN MARTIAN CURRENCY

In this activity, students designed a currency for Mars. They thought creatively about its name, appearance, and possible uses within a space colony, combining imagination with practical thinking.

MARS SCHOOL TIMETABLE – LEARNING IN THE FUTURE

Students designed a futuristic school timetable for life on Mars, adapting classes to Martian days and survival needs. The activity combines science, creativity, and time-planning to imagine learning beyond Earth.

DESIGN A MARS SCHOOL – FUTURISTIC BLUEPRINT

In this activity, students imagined and designed a futuristic school on Mars. They created a detailed blueprint featuring specialized zones such as the Gravity Gym, Knowledge Dome, Tech Cave, and more. Each area is labeled and described with its purpose and unique Martian features.

MARTIAN FARMING PLANNER

In this activity, students imagined themselves as astronauts living on Mars and designed a farming system to grow food. They plan how plants can grow using hydroponics or aeroponics, draw their own Martian farm design, label its parts, and explain how the system would help astronauts survive on Mars.

POWERING MARS – ENERGY ARCHITECT ACTIVITY

In this activity, students explored why energy is essential for survival on Mars and why it is challenging to supply. They learn how nuclear fission and fusion generate energy from atoms, answer guiding questions, and draw labeled diagrams of both processes in their notebooks.

Future Fuel Debate activity

Students participated in a debate on the topic “*Hydrogen Fuel Will Replace Petrol and Diesel in the Future.*” Through arguments for and against the motion, they developed critical thinking, research skills, and an understanding of future energy possibilities.

KINETIC ENERGY SHOWDOWN: POWER OF MASS VS. VELOCITY!

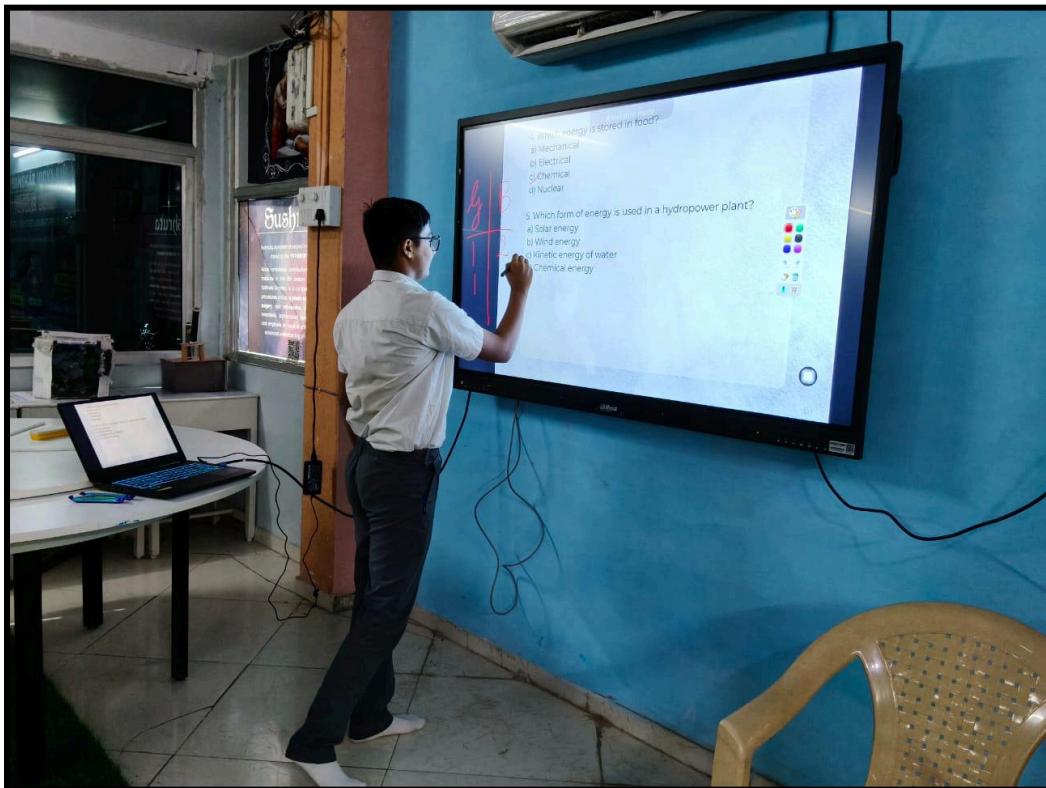
In this activity, students explored how kinetic energy changes when mass or velocity increases. Using the formula for kinetic energy, they compared the effects of doubling mass, doubling velocity, and doubling both. Through calculations and reflections, they discover that velocity has a greater impact on kinetic energy than mass.

SPACE VECTOR DETECTIVE

Students identified vector quantities from a given list and used their initials to reveal a secret space word. This activity offers a fun and engaging way to understand the difference between scalar and vector quantities.

CITY ENERGY SAVING PLAN

Students created an energy-saving plan for their city by identifying major areas of energy use and proposing practical solutions to make the city more energy-efficient and eco-friendly.


ENERGY DETECTIVE – WHO STOLE THE CLEAN AIR?

In this activity, students acted as environmental detectives to solve a fictional case about air pollution. Using a printed case report format, they identify suspects, gather clues, analyze the impact of burning coal, and propose solutions to restore clean air.

ENERGY MCQ CHALLENGE

Students answered multiple-choice questions based on the Energy video module to test and reinforce their understanding of the topic.

DESIGN A RENEWABLE ENERGY HOME

In this activity, students drew and designed a home that runs entirely on renewable energy sources. Along with the drawing, they mention the renewable energy source used and explain how it powers different parts of the home.

ENERGY COMPARISON TABLE

In this activity, students compared two different types of energy side by side in a table format. They list key points such as source, type, uses, advantages, limitations, and real-life or space examples to better understand their differences.

ESCAPE VELOCITY CHALLENGE – WHY LIGHT CAN'T ESCAPE A BLACK HOLE

In this activity, students explored the concept of escape velocity by comparing Earth, the Sun, neutron stars, and black holes. They calculate escape velocities step by step and discover that for black holes, the escape velocity is greater than the speed of light—explaining why not even light can escape. This activity helps them connect physics formulas with real cosmic phenomena.

VOYAGER POSTAGE STAMP DESIGN

In this creative art-science activity, students designed their own commemorative postage stamp celebrating the Voyager 1 mission. They illustrated the spacecraft, planets, stars, and the Golden Record while including key details like "USA 1977" and "Voyager 1 – Interstellar Mission." This activity helps students learn about Voyager's journey beyond our solar system while expressing their imagination through art and design.

MOON PHASE SPINNER

After learning about the different phases of the Moon, students performed a fun hands-on activity to create their own Moon Phase Spinner. Using two circular paper cutouts, they drew and labeled all eight moon phases on one circle and added an arrow cutout on top to point to each phase. By rotating the arrow, students could observe and identify each phase — from New Moon to Full Moon and back again. This creative activity helped them visualize how the Moon's appearance changes as it orbits Earth while making learning interactive and enjoyable.

MY SKY, MY CONSTELLATION

In this activity, students learnt what constellations are and how different cultures used star patterns to identify shapes in the night sky. They first learnt what constellations are and saw examples like Orion, Ursa Major, and more. Students then drew these constellations in their notebooks to understand how stars form patterns. Finally, each student created their own constellation design, connected the stars, and gave their constellation a unique name. This activity helped students observe patterns, understand basic astronomy, and expressed creativity through star arrangements.

MOON CLASSIFIED ADS!

In this activity, students became Moon Advertisers, designing their own ad—with a space twist! Students chose one category: for sale, lost, or help wanted, and create an advertisement based on imaginary objects or jobs found on the Moon. They could sell imaginary Moon items (like moon rocks, rover parts, or space tools), report something that is lost on the Moon (like helmets, sample bags, or gadgets), or create a job ad for someone needed on the Moon (like crater cleaners, moon dust collectors, or rover mechanics). After that, they wrote a catchy title, drew the item or job, and described it in 3–4 short lines using Moon concepts such as low gravity, craters, dust, or lunar bases. At the end, everyone shared their ad with the class—just like a real “Moon Marketplace”!

MYSTERY MOON BOX CHALLENGE

In this activity, students were divided into groups and took turns picking question chits from a “Mystery Moon Box.” Each chit contained a question based on the Moon Walker video module they had watched earlier. Groups discussed and answered the questions one by one. Every correct answer earned points for the team, and the group with the most correct answers was declared the winner. This fun and interactive activity helped students recall and apply their learning about the Moon in an engaging way.

MOONWORD MANIA

Fill in the Missing Letters - In this activity, students were given a set of questions based on Moon Walker Module 2 module. Each question served as a hint to decode a hidden word related to the Moon or space missions. Students individually solved the word puzzles by filling in the missing letters to form the correct answers. This activity encouraged critical thinking, improved recall of key concepts, and made learning about the moon fun and interactive.

APOLLO CREW PUZZLE MATCH

In this activity, students matched astronaut cards with their corresponding Apollo mission badges. Each card features an astronaut's image and name, while the mission cards displayed the official Apollo patch and crew role (Commander, Lunar Module Pilot, etc.). Students correctly paired the astronaut with their mission and role, testing their memory and knowledge of Apollo missions. This engaging, hands-on activity helps students learn about famous astronauts and their contributions to space exploration in a fun and interactive way.

MOON FACT FIXERS

Students completed fill-in-the-blank statements using the correct Moon-related terms. Each question included a set of options, and students must choose the one that accurately completes the fact. This interactive exercise helped reinforce important concepts about the Moon, strengthens recall, and encourages students to think carefully before selecting their answers.

MAP THE MOON MISSION

Students examined a Moon photograph showing real landing sites of Apollo, Luna, and Chang'e missions. They then drew the Moon's surface in their notebooks and marked each mission's landing location. To show which country conducted each mission, students added flags beside the points: Apollo (USA), Luna (USSR), Chang'e (China). This activity helped students learn Moon geography and understand the history of lunar exploration.

MOON SURFACE DETECTIVE

Students use a labeled Moon map to identify different lunar features such as craters, maria, basins, and rilles. They explored each feature, counted how many of each type appear on the map, and drew the features in their notebooks. In this activity, students become “Moon detectives,” observing, identifying, and sketching features to understand the Moon’s surface better.

APOLLO MISSION TIMELINE CHALLENGE

In this activity, students wrote the timeline of Apollo missions (Apollo 1 to 17) to understand and remember them easily. After the activity was conducted, a question answer round was held based on an Apollo mission to check their understanding.

MOON GRAVITY EXPERIMENT

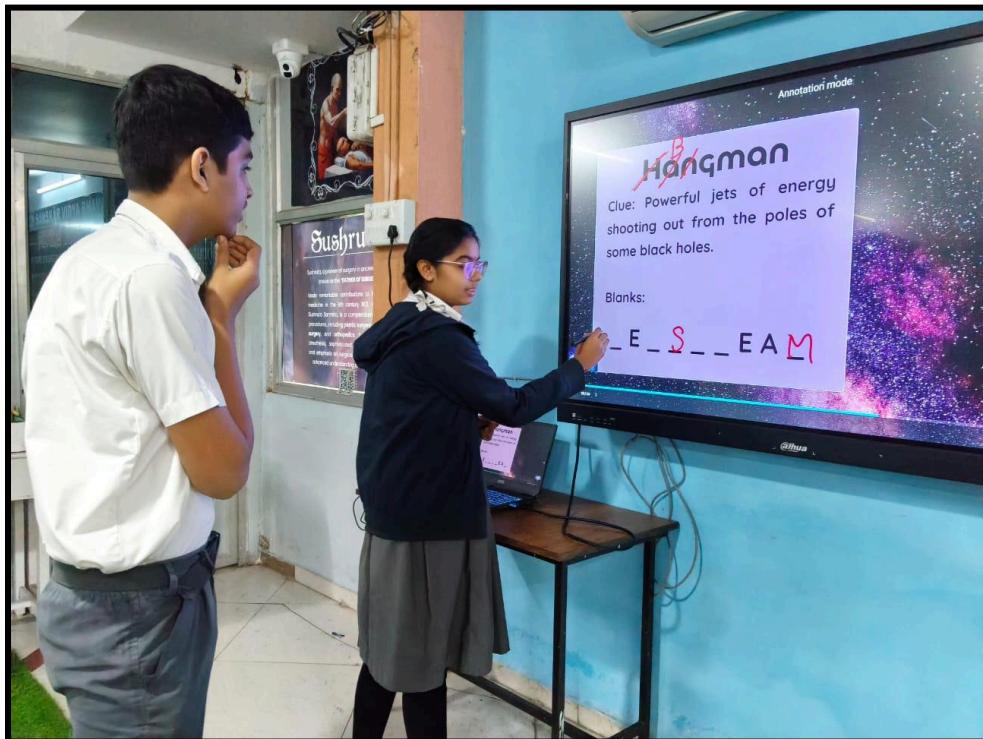
Compared Velocities: In this activity, students explored how gravity affects the speed of a falling object on Earth and the Moon using Newton's motion formula $v = u + g \times t$. Students learnt to apply motion equations, understood gravitational differences between Earth and the Moon, and connected theory with real-world physics through observation and calculation. By calculating and comparing the final velocities for different times, students understood that gravity on the Moon is about 1/6th of Earth's gravity. They observed that objects fall much slower on the Moon than on Earth.

HEADLINE DESIGN CHALLENGE

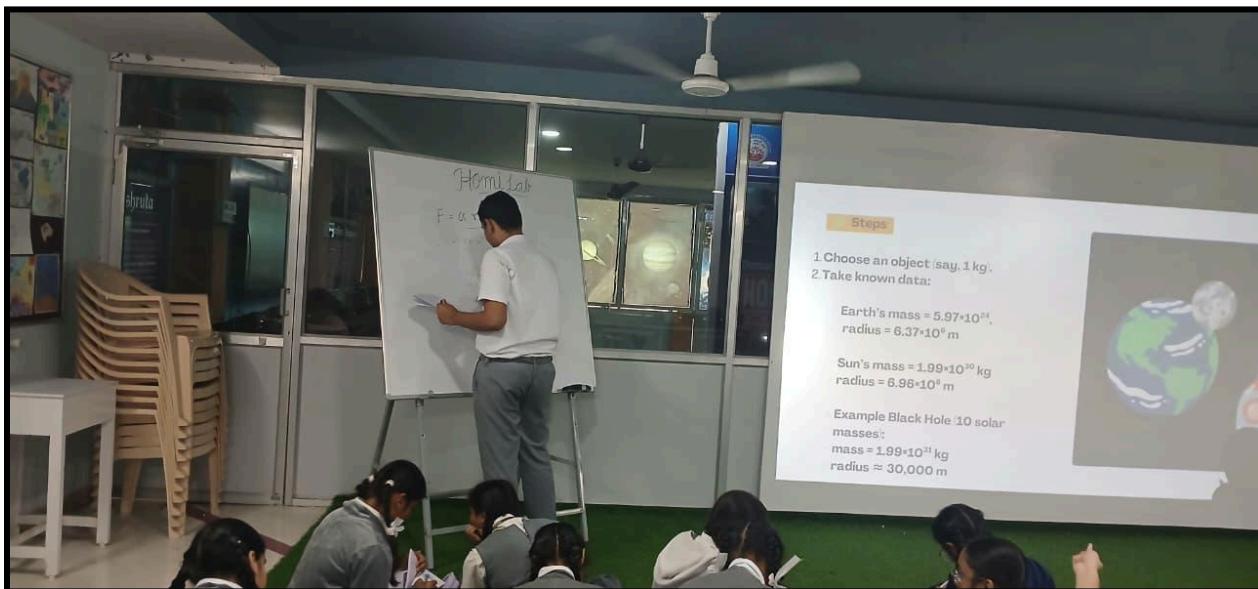
Students created a front-page news report by writing a newspaper name, date, main headline, a small picture, and a 4–6 line news story based on topics like Apollo missions, Moon landing, chandrayan, space, alien etc. This activity helped them revise the chapter creatively and learn how to present information like real reporters.

DESIGN A MARS COLONY POWER STATION

Students will design a power station for Mars with a nuclear reactor, solar panels, or fusion dome, show how energy flows and who will be the users.


BLACK HOLE EVOLUTION TREE

In this activity, students drew the Black Hole Evolution Tree and noted each branch with detailed explanations. Using the Black Hole Evolution Tree, they traced three possible paths — through supernova explosion, direct collapse, and binary star mergers — to understand how stellar-mass, intermediate, and supermassive black holes are formed.


BLACK HOLE HANGMAN

In this activity, students played a blackhole-themed Hangman game using key vocabulary related to black holes. Each round provided a clue based on concepts such as supernova, event horizon, singularity, accretion, jetstream, stellar mass blackhole and more. Students had to guess the hidden word by suggesting word / letters, using the clue and partially filled blanks to help them.

COMPARE GRAVITY STRENGTH SUN VS EARTH VS BLACKHOLE

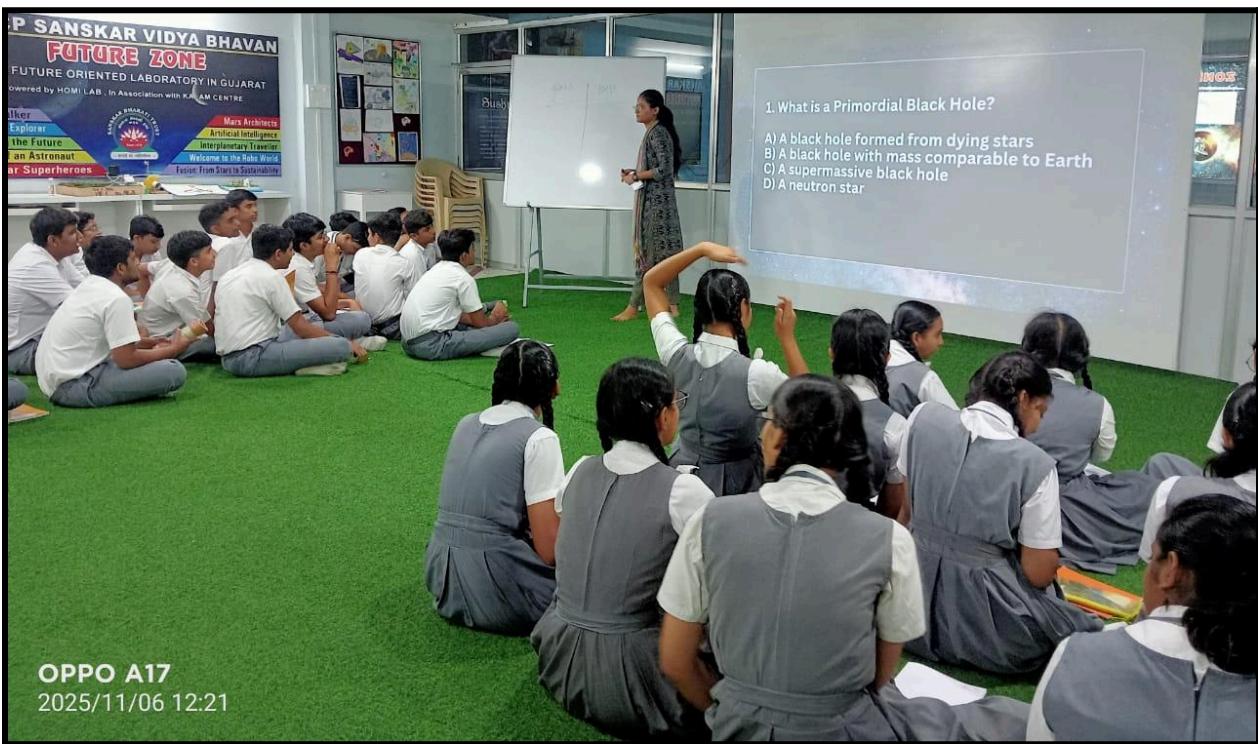
Students used the formulas $F = Gm_1m_2 / r^2$ and $g = GM / R^2$ to compare the gravity of Earth, Sun, and a black hole using real mass-radius data. They tabulated their results and observed how gravitational strength increases dramatically from planets to stars to black holes. This activity helped them understand gravitational force and acceleration in a clear and practical way.

BLACK HOLE KNOWLEDGE BUILDER

This activity turns black hole science into short, engaging stories with missing key terms. Students fill in the blanks, which helps them remember new concepts easily. It boosts confidence by allowing them to apply scientific words in context.

RAPID-FIRE KNOCKOUT BLACKHOLE EDITION

In this fast-paced revision game, students passed a box around the circle while music played. When the music stopped, the student holding the box must answer a quiz question from the Blackhole Explorer module. If they answer correctly, the game continues; if they cannot answer, they are out of the round. The activity continues until only one student remains — the Knockout Champion. This fun and energetic game helped students recall key concepts, think quickly, and stay actively engaged.


BLACK HOLE WORD SEARCH ACTIVITY

In this activity, students engaged in a fun Black Hole Word Search puzzle, where they identified and circled key terms related to black holes. This helped them reinforce scientific vocabulary while learning important concepts in an interactive way.

BLACKHOLE BRAIN BATTLE

Conducted the “Blackhole Brain Battle” quiz activity based on a video, where students first noted key points and then participated in an engaging “Girls vs Boys” quiz challenge.

INTO THE BLACK HOLE – ESCAPE ROOM CHALLENGE

Students participated in an exciting Black Hole Escape Room Challenge with four levels of puzzles. They solved an Event Horizon riddle, decoded gravity comparisons, and performed time dilation calculations. The final task involved labeling a black hole diagram to escape. The activity blended science learning with teamwork, critical thinking, and adventure.

OPPO A17
2025/11/13 12:28

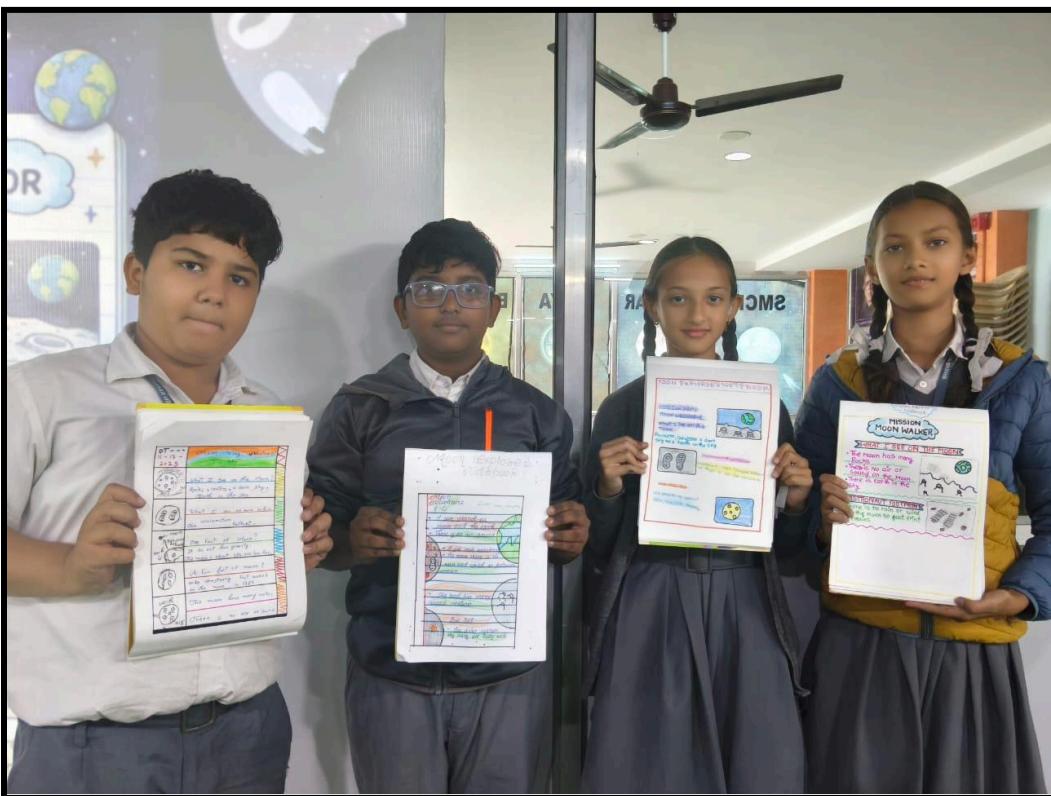
SPACE TERM RELAY

Students created a chain of space-related words. Each new word had to start with the last letter of the previous word. This activity helped students improve vocabulary, recall scientific terms, and think creatively while revising concepts related to black holes.

OPPO A17
2025/11/20 12:19

SPECTRUM CONSTRUCTOR ACTIVITY

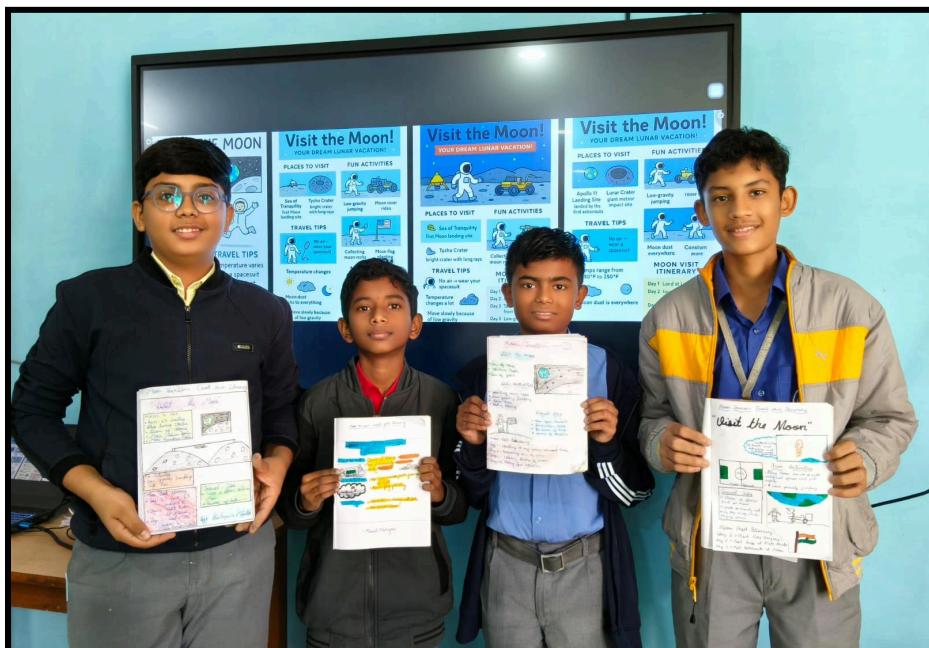
Students drew the complete electromagnetic spectrum in their notebooks using creative symbols for each wave—from radio to gamma rays. They represent every region with simple icons to understand its meaning and use. This artistic approach helped them easily remember the order of waves and how wavelength and frequency changed. Drawing and labeling make learning faster and more enjoyable than reading alone.


MOONTUBE CHANNEL PLANNER

In this creative activity, students imagined themselves as space vloggers who have just landed on the Moon. Using what they learned about the lunar surface, gravity, and astronaut life, they designed their own “MoonTube” channel. Students created a channel name, chose their target audience, planned five exciting lunar video ideas, and sketched a simple logo. At the end, they shared their video ideas with the class, making the activity fun, engaging, and full of imagination.

MOON EXPLORER'S NOTEBOOK

This is a creative, notebook-based activity where students imagined themselves as astronauts exploring the Moon. They designed a colorful page divided into four simple sections—mission name, what I see on the moon, astronaut footprints, and one fun fact. Through short sentences and drawings, students recorded their observations just like real space explorers.


INVENT A SPACE GADGET

In this creative activity, students imagined themselves as young space engineers living in the future and designed a new gadget that could be useful on the Moon. After learning about the Moon's environment, low gravity, and challenges faced by astronauts, each student selects one space gadget idea and gives it a name. They explain its purpose, describe how it works, and draw a labelled diagram of their invention. This activity encouraged creativity, problem-solving, and scientific thinking while helping students connect classroom learning with real-life space challenges in an engaging way.

MOON TOURISM: CREATE YOUR ITINERARY

Students became part of the Moon Tourism Department, taking on the role of official Moon Guides whose mission is to design a creative and informative travel itinerary for future Moon travellers. As official “Moon Guides,” students planned a lunar trip by selecting the best spots to explore, fun low-gravity activities to enjoy, and important travel tips for safety. Their itinerary also included a simple day-by-day schedule describing what travellers will do on the Moon. Through this activity, students used creativity, imagination, and scientific understanding to design a complete and engaging Moon trip plan—just like real space travel planners!

DESIGN SMART BOOTS FOR THE MOON

Design Smart Boots for the Moon is an activity where students acted as space engineers to design Moon boots with innovative features. They created labeled diagrams and explained each feature using the Problem → Feature → How it Helps format, linking space science concepts to real-life challenges. The activity builds creativity, design thinking, and scientific reasoning while encouraging students to think beyond textbooks.

JOURNEY TRACKER: TO THE MOON!

Students learnt how a spacecraft travels from Earth to the Moon by understanding six mission stages. They observed a diagram showing each step from liftoff to lunar landing. After the explanation, they drew a simple flowchart of all six stages in their notebooks. This activity helped them clearly visualize and understand the real process of a Moon mission.

MOON SCHOOL TEXTBOOK DESIGNERS

Moon School Textbook Designers is a creative activity where students imagined themselves as authors and designers creating a textbook for schools on the Moon. They designed the cover, chose the subject and level, and planned the content and index related to Moon life, science, and survival. This activity builds creativity while helping students apply their knowledge about the Moon and future education systems.

BLACK HOLE STORYBOARD: HOW SCIENTISTS TOOK THE PHOTO

In this activity, students were divided into groups to create a comic-style storyboard showing how scientists captured the first image of a black hole using the Event Horizon Telescope (EHT). Each group illustrated different key stages—global telescopes collecting radio waves, storing and shipping petabytes of data, processing signals with supercomputers, and forming the final bright ring image. Students used simple drawings and captions to explain each step, helping them to learn how the 2019 black hole image was made, while developing teamwork, creativity, and scientific understanding.

BLACK HOLE EXPLORER LOGBOOK

Black Hole Explorer Logbook is a creative activity where students imagined themselves as space scientists documenting a black hole mission. They recorded mission details, tools, observations, and discoveries through drawings and short explanations while designing their own missions and telescopes. The activity connects textbook concepts with real research like the Event Horizon Telescope and builds scientific thinking, creativity, and communication skills.

